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Abstract— Comprehensive and consistent dynamic scene un-
derstanding from camera input is essential for advanced au-
tonomous systems. Traditional camera-based perception tasks
like 3D object tracking and semantic occupancy prediction lack
either spatial comprehensiveness or temporal consistency. In
this work, we introduce a brand-new task, Camera-based 4D
Panoptic Occupancy Tracking, which simultaneously addresses
panoptic occupancy segmentation and object tracking from
camera-only input. Furthermore, we propose TrackOcc, a
cutting-edge approach that processes image inputs in a stream-
ing, end-to-end manner with 4D panoptic queries to address the
proposed task. Leveraging the localization-aware loss, TrackOcc
enhances the accuracy of 4D panoptic occupancy tracking
without bells and whistles. Experimental results demonstrate
that our method achieves state-of-the-art performance on the
Waymo dataset. The code will be released for future research.

I. INTRODUCTION

A holistic and precise understanding of dynamic environ-
ments is essential for perception systems in robotics and
autonomous vehicles. A robust perception system needs to
estimate the geometry, semantics, and identities of the current
scene in a spatial-continuous and temporal-consistent way to
interact with complex, changing 3D surroundings.

Previous efforts to achieve this goal include 3D object
tracking [1], [2], semantic occupancy prediction [3], [4],
[5], [6], and 4D LiDAR segmentation [7], [8], [9]. As
depicted in Fig. 1, 3D object tracking (a) typically focuses
on tracking objects across frames using bounding boxes.
However, bounding boxes neglect fine-grained geometric
details and struggle to represent general objects. On the
other hand, occupancy-based tasks (b) offer a more com-
plete representation of the 3D scene by incorporating both
geometry and semantic information. Despite this advantage,
existing approaches to occupancy prediction are mostly
limited to spatial semantic perception, lacking a broader
focus on panoramic temporal understanding. 4D Panoptic
LiDAR Segmentation (4DPLS) [7] tackles both semantic
and instance segmentation in a 3D space over time, but it
is constrained by the high cost of LiDARs and the limited
sparsity of point clouds.

Different from previous efforts, we propose a brand-new
task: Camera-based 4D Panoptic Occupancy Tracking, as
shown in Fig.1 (d). Unlike 4DPLS, which poses restricted
semantic details, our task utilizes camera-only input, offering
a cost-effective and easy-to-deploy solution that enhances
spatiotemporal urban scene understanding.
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Fig. 1: Comparison of tasks for scene understanding.
(a) Outputs bounding box tracks from multi-view image
sequences. (b) Predicts semantic labels for the occupancy
volume from multi-view images. (c) Applies 3D panop-
tic segmentation on aggregated 4D LiDAR point volumes,
followed by post-processing instance matching. (d) Our
proposed task: Predicts temporally consistent panoptic labels
of the occupancy from multi-view image sequences.

Furthermore, as shown in Fig.1 (c), previous methods for
4D LiDAR panoptic segmentation all conduct 4D LiDAR
panoptic segmentation in a (3+1)D way, i.e., segment aggre-
gated 3D volumes, and then post-process them to link the
volumes [7]. Instead, we introduce TrackOcc, an end-to-
end learning-based tracker approach for Camera-based 4D
Panoptic Occupancy Tracking.

TrackOcc processes image inputs in a streaming, end-
to-end manner, eliminating the need for extensive post-
processing. Specifically, we introduce 4D panoptic queries
into TrackOcc, enabling the prediction of occupancy with
time-consistent panoptic labels in a unified framework. To
ensure that the 4D panoptic queries capture spatially-accurate
3D features, we employ localization-aware loss to guide
TrackOcc towards the targeted areas, which significantly
enhances the model’s overall performance.

To summarize, our main contributions are three-fold:
• To the best of our knowledge, we make the first at-

tempt to explore a camera-based 4D panoptic occupancy
tracking task, which jointly tackles occupancy panoptic
segmentation and object tracking with camera input.

• We propose TrackOcc, which uses 4D panoptic queries
to perform the proposed task in a streaming, end-to-end



manner. We also introduce a localization-aware loss to
enhance the tracking performance.

• For fair evaluations, we propose the OccSTQ metric and
build a set of baselines adapted from other domains.
Experiments demonstrate that our TrackOcc achieves
state-of-the-art performance on Waymo dataset.

II. RELATED WORK

A. 3D Occupancy Prediction

Occupancy representation, compared with 3D bounding
boxes, offers finer geometric details and can assist in han-
dling general, out-of-vocabulary objects [10]. The task re-
quires to jointly estimate the occupancy state and semantic
label of every voxel in the scene from images. Among the
explorations, Occ3D [10] offers a 3D occupancy dataset,
followed by multiple solutions [11], [3], [6]. Several recent
works attempt to extend the task to panoptic prediction.
SparseOcc [6] utilized the inherent sparsity property of the
scene to reduce the computational cost while offering an
extension to panoptic occupancy prediction. PaSCo [12]
extended the Semantic Scene Completion task to the panoptic
segmentation. However, they cannot guarantee temporally
consistent panoptic label prediction, specifically in tracking
objects. Achieving this is a critical milestone for robots and
autonomous vehicles, as it enables them to perceive and plan
their paths effectively in the physical world.

B. Video Panoptic Segmentation

Video Panoptic Segmentation (VPS) is proposed in [13]
to unify video semantic and video instance segmentation. In
the beginning, numerous methods [13], [14] like VPSNet, de-
pend on multiple sub-networks and complex post-processing
(e.g. NMS, thing-stuff fusion). To alleviate these shortcom-
ings, Recent research efforts for end-to-end video panoptic
segmentation, such as [15], [16], [17], [18] are extended from
image panoptic segmentation method, incorporating specific
trackers for this purpose. However, Since these methods rely
on feeding video clips into the model, they can only handle
short-term associations. Furthermore, these VPS methods
are mainly applied to the 2D video domain and cannot be
directly applied to the 3D world domain.

C. 3D Object Tracking

3D Multi-object tracking (3D MOT) involves using multi-
view images from cameras or point clouds from LiDAR to
track multiple objects across frames. Building upon advances
in 3D object detection [19], [20], [21], [22], recent 3D
trackers usually adopt the tracking-by-detection paradigm,
associating trajectories with detected boxes through post-
processing. However, this paradigm is heavily dependent
on complex human designs and post-processing steps. To
overcome these limitations, MUTR3D [23] has successfully
extended the MOTR-type tracker to the 3D domain, achiev-
ing end-to-end 3D tracking with promising results. ADA-
Track [24] and DQTrack [1] utilize query-based frameworks
and learnable associations to detect and track objects in
multi-view images. However, these methods are based on

bounding boxes rather than occupancy, neglecting the finer
geometric details and general objects. And they only focus
on tracking thing classes, ignoring recognizing stuff classes,
where we unify them in one framework.

D. 4D Panoptic LiDAR Segmentation

The spatiotemporal interpretation in LiDAR point-based
tasks has been extensively explored [9], [25], [26], [8]. Since
the task was first defined [7]. 4D-PLS [7] initially proposed
applying 3D panoptic segmentation to a frame of multi-
scan-aggregated point clouds, aiming to reduce the need
for explicit data association. Subsequently, methods such
as Mask4Former [8] have emerged, focusing on spatially
compact instance segmentation with an additional 6-DOF
bounding box regression. However, these approaches still
rely on 3D segmentation, which cannot eliminate the need for
offline post-association. As a result, it does not fully address
the 4D panoptic segmentation problem and is not suitable for
real-time streaming applications, limiting its use in mobile
robots and autonomous driving systems.

III. METHOD

A. Problem Definition

In this paper, we propose the Camera-based 4D Panoptic
Occupancy Tracking task, which jointly addresses occu-
pancy panoptic segmentation and object tracking in both
spatial and temporal domains. Specifically, the model takes
as input a sequence of RGB images, denoted by denoted by
I = {Iit, Iit−1, . . . , I

i
t−L}Ni=1, where N represents the number

of surrounding cameras and L denotes the sequence length.
Given a predetermined set of C semantic classes, encoded
as C := {0, . . . , C−1}, the task requires a neural network to
map each voxel i in the grid to a pair (ci, zi) ∈ C×N, where
ci represents the semantic class of voxel i and zi denotes
its instance ID. The semantic label set comprises both stuff
and thing categories. When a voxel is labeled as stuff, its
corresponding instance ID zi is irrelevant. Voxels in the free
space are assigned a special free stuff label. The instance
IDs zi group voxels of the same class into distinct segments,
which should persist throughout the entire sequence. The grid
dimensions are X × Y × Z, representing the height, width,
and depth of the grid, respectively.

B. Overall Architecture

The overall proposed TrackOcc architecture is depicted
in Fig. 2 and comprises three main components. First, an
encoder (Sec. III-C) extracts volume features from multi-
view images. Second, a novel query design facilitates both
panoptic segmentation and instance tracking. Finally, a de-
coder (Sec. III-E) interacts with the volume features and
queries to generate the final 4D prediction in an end-to-end,
streaming process.

C. Encoder

The encoder constructs the 3D volume features from
multi-view images by integrating an image feature extractor
with a 2D-to-3D transformation module. The image feature
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Fig. 2: Overall Pipeline of TrackOcc. At each timestep, the encoder extracts multi-view image features and transforms
them into 3D volume features. These volume features serve as critical context for updating the 4D panoptic queries via a
designed decoder. The query propagation module facilitates efficient object tracking in a streaming, end-to-end manner. The
symbol

⊗
denotes matrix multiplication.

extractor captures multi-scale features from multi-view im-
ages, which are then transformed into 3D volume repre-
sentations F ∈ RX×Y×Z×D, where D denotes the feature
dimension per voxel. Extensive research has been dedicated
to methods for transforming 2D image space into 3D volume
space, including LSS [27], BevDepth [28], BEVFormer [29],
FB-Occ, and COTR [3]. In our experiments, we utilize
COTR’s encoder [3] as our 2D-to-3D transformation module.
Importantly, our TrackOcc is flexible and compatible with all
of these approaches.

D. 4D Panoptic Query

When designing queries for 4D Panoptic Occupancy
Tracking, two main challenges arise:1) how to define queries
for panoptic segmentation and instance tracking. 2) how to
manage newborn and terminated instances.
Query Definition. We define two types of queries: emerging
queries Qem and track queries Qtr. Emerging queries are
utilized for both stuff and detecting newborn instances,
while track queries are responsible for predicting all ex-
isting tracked instances. For simplicity, stuff is assigned to
emerging queries since it does not require tracking. The set
of track queries is updated dynamically, and its size varies
over time. In the first frame, there are no track queries; only
the fixed-length, learnable emerging queries are fed into the
decoder. For subsequent frames, we input Qt, which is the
concatenation of track queries Qt

tr and the learnable emerging
queries Qt

em into the decoder. These queries interact with the
volume features in the decoder to generate updated queries
Q̃t = Q̃t

em ∪ Q̃t
tr which are used to produce the final 4D

predictions. The updated queries Q̃t are also passed to the
Query Propagation Module to generate the track queries Qt+1

tr
for the next frame.
Query Propagation. To handle instances that may appear
or disappear in intermediate frames, we introduce the Query
Propagation Module. This module manages the propagation

of queries for newborn and terminated instances within our
method. During training, for queries in Q̃t

em, only those
queries matched to ground truth things are converted into
track queries. Queries corresponding to ground truth stuff
are not converted into track queries. For queries in Q̃t

tr are
removed if they have been matched to ∅ for Tf successive
frames.

During inference, we use the predicted classification
scores to determine appearance of newborn instances and
disappearance of tracked instances. For queries in Q̃t

em,
predictions with classification scores higher than the en-
trance threshold τ1 and corresponding to things are retained.
Queries corresponding to stuff are discarded even if their
classification scores exceed τ1. For queries in Q̃t

tr, predictions
with classification scores lower than the exit threshold τ2 for
consecutive Tf frames are removed.

E. Decoder

We detail the decoding process as follows. First, the
queries interact with each other to enhance features using
a self-attention [30] layer. Then, they look up and aggregate
volume features via a Volume Cross-Attention (VCA) layer.
Due to the large input scale of the volume features, the com-
putational cost of vanilla attention [30] is high. Therefore,
we adopt a VCA layer based on deformable attention [31],
a resource-efficient attention mechanism where each query
interacts only with its regions of interest in the volume.
Specifically, each emerging query q ∈ Qem predicts a 3D
reference point p ∈ R3 using an MLP layer while each track
query q ∈ Qtr maintains its corresponding reference point
over time, and the volume features F around these reference
points are sampled. A weighted sum of the sampled features
is then performed as the output. The process of volume cross-



attention (VCA) can be formulated as:

VCA(q, F ) =

J∑
j=1

wj · F (p+∆pj), (1)

where j indexes the sample point, and wj ∈ R1 and ∆pj ∈
R3 are learnable weights and offsets.

Finally, a linear classifier, followed by a sigmoid activation
function, is applied on top of the query embeddings to
yield class probability predictions. Notably, the classifier
predicts an additional ”no object” category ∅ in cases where
the query does not correspond to any region. For mask
prediction, we obtain each binary volume mask prediction
mi ∈ [0, 1]X×Y×Z via a matrix multiplication between
each query and the volume feature, followed by a sigmoid
activation. The binary volume mask, combined with the class
prediction, generates the panoptic occupancy prediction. For
things, a temporally consistent instance ID is further assigned
for the 4D prediction.

F. Loss function

The optimization objectives of our approach focus on two
main aspects: mask prediction and position prediction of all
queries. We calculate the mask classification loss Lmask−cls

for masks, and different types of queries are matched with the
ground truth using different strategies. Track queries persist
throughout the entire occupancy flow, which allows us to
assign the ground truth for each of them only once across all
timesteps. Once created by inheriting from emerging queries,
track queries are tied to the corresponding ground truth and
remain unchanged.

Emerging queries, which transition between different time
frames, do not require explicit assignment at each timestep.
Following Mask2Former [32], we establish a correspondence
between the ground truth and the prediction via bipartite
matching, solved by the Hungarian algorithm [33]. Once the
matching is established, we compute the mask classification
loss for queries, denoted as Lmask−cls, which includes the
binary mask loss Lmask and the multi-class cross-entropy
loss Lcls.

Localization-aware Loss. Localizing and tracking each
object accurately is both crucial and challenging. Previous
works that rely on mask classification for 3D panoptic
prediction, such as SparseOcc [6], have limited localization
capabilities. Thus, we propose the localization-aware loss:

Lloc = L1(P ′, P ), (2)

to improve the accuracy of query-specific 3D positions, since
they are used in our VCA module to serve as the reference
points for the attention. Note that the predicted points P ′

only come from the queries that are tied to thing classes due
to the lack of the proper and consistent ground truth points
of stuff regions. We can obtain P by easily calculate the
centroid of each object. We observe that this enhancement
significantly improves the metrics, as demonstrated in our
experiments(Sec. IV).

Overall, the final training loss is:

L = Lmask−cls + Lloc. (3)

IV. EXPERIMENTS

A. Dataset

We conduct our experiments on the Occ3D-Waymo [10]
dataset, which provides dense semantic labels for 3D occu-
pancy grids. This dataset includes 798 training scenes and
202 validation scenes, with a spatial range of [−40m, 40m]
for the x and y axes, and [−1m, 5.4m] for the z axis.
The voxel grid size is (0.4m, 0.4m, 0.4m), resulting in a
resolution of (200× 200× 16) for (X,Y, Z). However, the
dataset lacks panoptic labels, offering only semantic labels.

To generate 4D panoptic labels for our proposed 4D
Panoptic Occupancy tracking task, we utilize the annotations
from the Waymo Open Dataset [35]. These annotations pro-
vide exhaustive 3D bounding boxes for vehicles, pedestrians,
and cyclists, each with a unique tracking ID. We classify
voxels corresponding to vehicles, pedestrians, and cyclists
as thing while all other categories are labeled as stuff.
Furthermore, thing voxels are divided into instances, with
voxels within a single 3D box grouped as one instance. For
thing voxels not located inside any 3D box, we assign them
to the nearest 3D box. Finally, each voxel is assigned the
tracking ID from its corresponding 3D box.

B. Implement Details

We adopt ResNet-50 [36] as the image backbone with
an input resolution of 256 × 704. Both Self-attention and
volume cross-attention is single-layer. The number of sam-
pling points per reference point, J , is set to 4 for VCA in
the Decoder. We put 200 emerging queries into each frame
and the query dimension is set to 256. The query lifecycle
is controlled by τ1 = 0.3, τ2 = 0.25, and Tf = 3. All our
experiments are conducted after training for 24 epochs with a
learning rate of 2× 10−4, using the AdamW [37] optimizer
and a batch size of 1, on 8 NVIDIA GeForce RTX 3090
GPUs.

C. Evaluation Metrics

To evaluate the methods for Camera-based 4D Panoptic
Occupancy Tracking, and showcase the segmentation and
tracking ability simultaneously, we propose the Occupancy

TABLE I: Performance Comparison Between SparseOcc
and COTR on 3D Panoptic Prediction. Under a fair revi-
sion metric PQ∗, COTR outperforms SparseOcc in both small
objects and stuff regions. C.C represents the construction
cone.

Methods Metrics Overall vehicle pole C.C. road

SparseOcc [6]
PQ 5.0 12.4 0.1 2.6 13.6

PQ∗ 12.8 21.6 7.0 13.8 34.4

COTR [3]
PQ 13.6 13.7 0.5 0.6 76.9

PQ∗ 22.4 24.3 15.0 12.0 78.2



TABLE II: Camera-based 4D Panoptic Occupancy Tracking Performance on the Occ3D-Waymo dataset [10]. MinVIS
and CTVIS are query-based association methods, while AB3DMOT refers to the tracking-by-detection method. 4D-LCA
denotes 4D LiDAR cross-volume association method in [7]. E2E represents end-to-end.

Method E2E OccSTQ OccSQ
OccAQ

Overall Vehicle Pedestrian Cyclist

MinVIS [15] ✓ 9.8 29.1 3.3 4.0 1.5 3.1

CTVIS [17] ✓ 10.7 26.5 4.3 5.3 2.1 1.6

AB3DMOT [34] ✗ 12.4 29.1 5.3 6.8 1.7 2.9

4D-LCA [7] ✗ 16.2 29.1 9.0 11.4 3.4 4.1

TrackOcc (ours) ✓ 20.0 29.4 13.5 18.1 3.1 4.6

TABLE III: Ablation Studies. Comparison of results with
different settings including Localization-aware Loss and the
number of training frames.

w/ Loc. Loss #frames OccSTQ OccSQ OccAQ
✗ 3 16.5 28.9 9.4
✓ 3 20.0 29.4 13.5
✓ 5 20.6 29.5 14.4

Segmentation and Tracking Quality (OccSTQ) metric. In-
spired by [38], [39], [7], the OccSTQ is derived from the
STQ [39], which is designed for video panoptic segmen-
tation, effectively disentangles association and classification
errors, and is well-suited for long sequences. Therefore, we
adapt it as OccSTQ for our task.

We define a sequence of occupancy frames as Ω =
{(v, t) | v ∈ X × Y × Z, t ∈ [0, T )}, where v represents a
voxel in a 3D spatial domain, and t denotes the timestep
over a total duration. The ground truth is represented as
gt(v, t), and the prediction as pr(v, t). OccSTQ consists of
Occupancy Segmentation Quality (OccSQ) and Occupancy
Association Quality (OccAQ), which measure segmentation
and association quality respectively.

OccSQ is defined as mean IoU (Intersection-over-Union),
similar to [39] and [7], but with voxels as the basic elements.

For OccAQ, we define the prediction for a specific iden-
tity in thing class as: prid(id) = {(v, t) | pr(v, t) =
(c, id), c ∈ Cth}, and the ground-truth is defined analogously
as gtid(id). Thus the true positive associations (TPA) is:
TPA(p, g) = |prid(id′) ∩ gtid(id)|. It is important to note
that the predicted id′ and the ground-truth id can belong to
different thing classes, as incorrect semantic classification is
penalized only in OccSQ. Similarly, false positive associa-
tions (FPA) and false negative associations (FNA) can be
defined. Then, the OccAQ can be summarized as:

OccAQ=
1

|G|
∑
g∈G

1

|gtid(g)|
∑
p∈P

p∩g ̸=0

TPA(p, g)·IoU(p, g). (4)

Finally, the OccSTQ is defined as the geometric mean of

OccSQ and OccAQ:

OccSTQ =
√
OccSQ×OccAQ. (5)

According to the definition of Occ3D [10], we only calcu-
late the metric within the visible region. Moreover, OccSTQ
can be extended to evaluate scene completion capability
without visible region constriction.

D. Baselines

Given the novelty of our proposed task, existing works
do not fully align with our objectives. To facilitate a fair
comparison, we constructed a series of baselines and demon-
strated our method’s superior performance. Specifically, we
first adopt COTR [3] as our baseline foundational 3D panop-
tic occupancy prediction model, since COTR shows better
performance than SparseOcc [40] in Tab. I. Then we adapt it
with mainstream temporal association techniques to achieve
4D panoptic occupancy tracking.

To select the proper 3D panoptic occupancy prediction
model, we test the MaskFormer-based methods, COTR [3]
and SparseOcc [6], using the panoptic quality (PQ) met-
ric [41] and PQ∗, as shown in Tab. I. Since PQ’s matching
requirement, IoU > 0.5, is too strict for camera-based
methods, resulting in the difficulty of comparing performance
on small objects, we transform the matching problem in PQ
to maximum weighted bipartite matching [42] and denote
the metric as PQ∗, intend to achieve a fairer comparison.

After the selection, we extend COTR [3] to the temporal
domain with adapted temporal association methods from
related fields for fair comparison.

• From video instance segmentation, we directly adopt
the bipartite matching approach for cross-frame query
association of MinVIS [15];

• We use the contrastive training strategy between cross-
frame query from CTVIS [17] to enhance the query
association ability;

• To associate instances across frames, an intuitive
method is to convert predicted voxels with the same
instance ID into bounding boxes and track them using a
bounding box tracker, thus, AB3DMOT [34] is adapted;

• Drawing from the two-stage association approach of
4D LiDAR panoptic segmentation [7], the 4D LiDAR
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Fig. 3: Qualitative results of our method and 4D-LCA. The same color indicates identical instances across different time
steps. Our method effectively tracks both moving and stationary vehicles, while the 4D-LCA method encounters difficulties
with moving vehicles. For clarity, only images from the front camera are displayed, although both methods process data
from surrounding cameras.

cross-volume association (4D-LCA) is incorporated as
a baseline.

E. Main results

As shown in Table II, we present a quantitative com-
parison between our method and the baselines. TrackOcc
outperforms all competitors, particularly in tracking quality.
Compared to 4D-LCA [7], our method achieves a significant
improvement of 3.8 OccSTQ and a 50% margin in OccAQ,
highlighting its strong tracking ability.

Several insights can be drawn from the results. Although
CTVIS [17] incorporates contrastive loss to enhance instance
association across frames, leading to improved performance
over MinVIS [15], these query-based association methods
underperform compared to position-based approaches like
AB3DMOT [34] and 4D-PLS [7]. This observation high-
lights the importance of emphasizing localization in our task.
It also demonstrates that our method effectively perceives
both appearance and location information, significantly im-
proving segmentation and tracking performance.

F. Ablation Studies

Localization-aware loss. We introduce the localization-
aware loss, which adds position supervision for the reference
points of 4D panoptic queries, and observe an increase of
3.5 in OccSTQ and more than a 40% improvement margin
in OccAQ, as shown in Tab. III. This demonstrates the loss
benefits 4D panoptic queries by capturing more positionally
accurate features, leading to more reliable tracking.

The number of training frames. Since increasing the
number of training frames better simulates real-world long-
sequence driving scenarios, we examine the performance

with 3 and 5 training frames, as reported in Tab. III. The
results demonstrate a positive impact on performance when
more training frames are added, indicating the scalability of
our method in the temporal dimension.

G. Qualitative Comparison

In Fig. 3, we provide a qualitative comparison between our
method and 4D-LCA [7]. TrackOcc demonstrates superior
performance in tracking both moving and stationary vehicles.
In contrast, 4D-LCA struggles with moving vehicles, failing
to maintain consistent instance associations over time, as
indicated by the red bounding boxes. These results highlight
the strong tracking capability of our method.

V. CONCLUSIONS

In this paper, we introduce a new task, Camera-based 4D
Panoptic Occupancy Tracking, which jointly tackles occu-
pancy panoptic segmentation and object tracking from cam-
era input. Besides, We propose TrackOcc, a novel camera-
based method that achieves 4D panoptic occupancy tracking
in a streaming, end-to-end fashion using 4D panoptic queries
and localization-aware loss. Experiments demonstrate that
TrackOcc outperforms other methods. We hope this work
will inspire further research in vision-based perception, par-
ticularly in applications like end-to-end autonomous driving
systems.

APPENDIX

For more details, please visit https://github.com/
zgchen33/TrackOcc_ICRA2025.
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